Design, Load, and Explore a
Movies Database

Perla Molina
Data Science Major
CS 333 Intro to Database Systems
Fall 2021

CHAPTER 1: PROJECT DESCRIPTION

a) Goal of the Project

The goal of this project is to practice the full circle of exploring a dataset. Exploring a
dataset includes: designing, building, and using a database that reflects the description of the
given dataset. The general steps can include but are not limited to: drawing an E/R diagram for
the design of the database in order to perceive a visual of the database; writing SQL code in
order to test, explore, query, and optimize the database; and summarizing the steps of the work
with conclusions in order to report the entirety of the project. There are three phases to this
project: 1) Design the database, 2) Build the database, 3) Use the database.

b) Data Exploration

The database is titled ‘movies’ with input files: movies.txt, size 490 KB; ratings.txt, size
229,596 KB; README.html, size 12 KB, and tags.txt, size 3,221 KB. ‘Movies’ has attributes:
MovielD, Title, and Genres. ‘Ratings’ has attributes: UserID, MovielD, Rating, and Timestamp.
And lastly, ‘Tags’ has attributes: UserID, MovielD, Tag, and Timestamp.

CHAPTER 2: DATABASE DESIGN

a) E/R Diagram

There are three entity sets: movies, genres, and users with three relationship sets: tags,
ratings, and has_genres. The first entity set, ‘movies’ connects to the relationship sets ‘ratings’
and ‘tags’ because they all contain the attribute key of ‘movieid’. The second entity set, ‘genres’
connects to the relationship set ‘has_genres’ because they both contain the attribute key of
‘movieid’. The third entity set, ‘users’ also connects to the relationship sets ‘ratings’ and ‘tags’
because they all contain the attribute key of ‘userid’.

The attributes of this database include: ‘userid’, which is the unique identification
number of the user that either rated or tagged the movie; ‘movieid’, which is the unique and
real Movielens identification number of the movie; ‘title’, which by policy, should be entered
identically to those found in IMDB; ‘year’ for the year the movie title was released just as shown
in IMDB as well (however, both ‘title’ and ‘year’ have been entered manually from the original
dataset, so errors and inconsistencies may exist); ‘gen_title’, which is all the genres that came
from the Movies.txt file in a pipe-separated list, and are selected from the following: Action,
Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir,
Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western; ‘rating’, which is made on a
5-star scale with half-star increments, given by a user; ‘tag’, which is a user generated metadata
about movies, each typically a single word or short phrase, determined by each user; and lastly,
‘time’, which is a timestamp represented in seconds since midnight Coordinated Universal Time
(UTC) of January 1, 1970.

Here is the E/R diagram which | have come up with:

gen title

genres

movies has_genres

ratings

users
b) Logical Schema

Here is a list of the logical schemas for the entity sets from the E/R diagram.
e movies(movieid, title, year)

e genres(gen_title)

e users(userid)
Here is a list of the logical schemas for the relationship sets from the E/R diagram.

e ratings(userid, movieid, rating, time)
e tags(userid, movieid, tag, time)

e has_genre(movieid, gen_title)
Entity set ‘movies’ has attributes: movieid - the primary key, title, and year. Entity set

‘genres’ has only one attribute, which is ‘gen_title’ that is also the primary key. Entity set
‘users’ also contains only one attribute, which is ‘userid’ that is also its primary key.
Relationship set ‘ratings’ has attributes: userid - the primary key, movieid - also the primary
key, rating, and time. Relationship set ‘tags’ has attributes: userid - the primary key, movieid -
also the primary key, tag, and time. The relationship set ‘has_genre’ has attributes movieid

and gen_title, which are both the primary keys.

CHAPTER 3: LOAD DATA AND TEST THE DATABASE

a) Load Data

Now we are going to code SQL queries to load the data into a database and test it.

i) Create A New Database:
First, we create a new database titled, ‘moviesdb’ in the terminal.

createdb -U postgres moviesdb

After it has been created, it needs to be accessed in order to start loading the data.
psqgl -U postgres moviesdb

ii) Create the Tables From the Logical Schema

Now we are ready to start creating the tables of the schema and loading the data.
They do not need to be created in this exact order nor all at once because loading the data
from the .txt files into the relationship tables will sometimes require an extra step of dropping
an entity set table using the DROP TABLE SQL command in order to properly load the data
from these files into the table without errors. (After loading the data, we can re-create that
previously dropped entity set table to continue loading data for it.) We first create the tables
for the entity sets, movies, genres, and users.

For the ‘movies’ table, this is the SQL query that will be used to create it.

CREATE TABLE movies (
movieid INTEGER PRIMARY KEY,
title VARCHAR (50),

year INTEGER

)
For the ‘genres’ table, this is the SQL query that will be used to create it.

CREATE TABLE genres (
gen_title VARCHAR (50) PRIMARY KEY

)
For the ‘users’ table, this is the SQL query that will be used to create it.

CREATE TABLE users (
userid INTEGER PRIMARY KEY

);

Now to create the relationship tables, it’ll be slightly different from creating the entity
set tables as we will need to be referencing primary key attributes from them. Similar to
before, these tables do not need to be created in this exact order. However, there is no need
to drop these relationship tables when loading the data.

To create the ‘ratings’ table, we will need to use this SQL query.

CREATE TABLE ratings (
userid INTEGER,
movieid INTEGER,

rating REAL,

time NUMERIC,

PRIMARY KEY (userid, movieid),

FOREIGN KEY (userid) REFERENCES users (userid),
FOREIGN KEY (movieid) REFERENCES movies (movieid)

)
To create the ‘tags’ table, we will need to use this SQL query.

CREATE TABLE tags (

userid INTEGER,

movieid INTEGER,

tag VARCHAR(1000),

time NUMERIC,

PRIMARY KEY (userid, movieid),

FOREIGN KEY (userid) REFERENCES users (userid),
FOREIGN KEY (movieid) REFERENCES movies (id)

)
To create the ‘has_genre’ table, we will need to use this SQL query.

CREATE TABLE has_genre (

movieid INTEGER,

gen_title VARCHAR(50),

PRIMARY KEY (movieid, gen_title),

FOREIGN KEY (movieid) REFERENCES movies (movieid),
FOREIGN KEY (gen_title) REFERENCES genres(gen_title)

)

iii) Load the Data From Input Files

Now that we have our tables ready, we can start loading the data into them. Before
doing so, it’s important to make sure all files of this database are in the same folder (such as
‘project files’) where we will query from.

From all the tables, only 'ratings' is ready to be loaded from its corresponding .txt file
right away with the COPY SQL command.

\COPY ratings (userid, movieid, rating, time) FROM
'project files/ratings.txt' WITH DELIMITER ':';

From this command, there should be 10000054 rows copied into table ‘ratings’. If an
error pops up, dropping the tables ‘users’ and ‘movies’ might need to be done first and those
tables will need to be re-created after ‘ratings’ has been loaded, otherwise, we can move
forward with the rest.

For table ‘tags’, | used a python script that edited its corresponding text file and
appended its data into a new tags.csv file. The purpose of this step is to help with loading the
data using the COPY command because certain tags may contain the ":' symbol in their 'Tag'
field. However, the ":' symbol is used as a delimiter in that file, too. Thus, the text file needs to

be edited where we’ll have a row show like this: UserID::MovielD::Tag::Timestamp. This is so
the COPY command can skip ":' symbols found in the 'Tag' field. Once that is cleared, we can
load the data into the ‘tags’ table with the command.

\COPY tags (userid, movieid, tag, time) FROM 'project
files/tags.csv' WITH DELIMITER ':';

From this command, there should be 95580 rows copied into table ‘tags’. If an error
pops up, dropping the tables ‘users’ and ‘movies’ might need to be done first and those
tables will need to be re-created after ‘tags’ have been loaded, otherwise, we can move
forward with the rest.

For table ‘users’, there’s no need to write an external python script to load the data
from a file. To populate the data, we do so by reading the unique users found in tables
'ratings' and 'tags'. To properly do this without complicated queries or commands, | first
dropped the table ‘users’.

DROP TABLE users CASCADE;

Then | used this SQL query to populate users from table ‘ratings’ into a table called
‘users2’.

CREATE TABLE users2 AS SELECT DISTINCT userid FROM
ratings;

From this query, 69878 users should be copied into table ‘users2’. After this, | inserted
unique users from table ‘tags’ into ‘users2’.

INSERT INTO users2
SELECT DISTINCT userid FROM tags;

From this query, 4009 new users should be added to table ‘users2’. From this, there
will be duplicates in ‘users2’, which is why distinct users will be populated from this table into
our actual ‘users’ table that will be used in this database.

CREATE TABLE users AS SELECT DISTINCT userid FROM
users?2;

Now there should be a total of 71567 unique users in table ‘users’ without any
duplicates whatsoever. Now we are free to delete or drop the table ‘users2’.

For table ‘genres’, | simply created a new text file title ‘genres.txt” and manually typed
all 20 genres into each line, including ‘(no genres listed)’. Then the text file was used to easily
populate the data into its corresponding table using the COPY command.

\COPY genres(gen_title) FROM 'project
files/genres.txt';

For table ‘movies’, | used a python script that edited its corresponding text file and
appended its data into a new cleanedMovies.txt file. The purpose of this step is to help with

loading only the relevant data, which is ‘movieid’, ‘title’, and ‘year’ from the original text file
that contained extra information and structure that is not needed for this table. | also decided
to use the ‘%’ symbol as a separator in the new cleanedMovies.txt file to make loading easier
and visually less confusing. But before using the COPY command to load the data, | needed
to set the encoding using this command ‘SET CLIENT ENCODING TO 'utf8';’to
enable Postgres to process data with accents or other language writings in movie titles.

SET CLIENT_ENCODING TO 'utf8';
\COPY movies (movieid, title, year) FROM 'project
files/cleanedMovies.txt' WITH DELIMITER '%';

From these commands, there should be 10681 rows copied into table ‘movies’. Make
sure to run the SET command line first before running the COPY command, otherwise, an
encoding error will occur.

Lastly, for table ‘has_genre’, | also had to use another python script that processed the
necessary information from the original movies.txt file, which is ‘movieid’ and ‘gen_title’. The
‘%’ symbol was again used as a separator to make loading easier and visually less confusing.
Once, that has been processed, the COPY command will be used again to load the data.

\COPY has genre (movieid, gen title) FROM 'project
files/has_genres.txt' WITH DELIMITER '%';

After the data is loaded, there should be 21564 rows copied into the ‘has_genre’
table. And now we are done with loading the data into all the tables.

b) Test the Database

We move on to test our database. In order to verify that the data has been
successfully loaded, we must run certain SQL queries to ensure that the database is up and
ready to use for analysis.

A) First, we list our tables using the \d function.

\d

moviesdb=# \d
List of relations
| Owner

genres postgres
has_genre postgres
movies postgres
ratings postgres
tags postgres
postgres
(& rows)

B) Then, we list the data types of each table.
\d genres

moviesdb=# \d genres

Table "public.genres"
Column | Type | Collation | Nullable | Default
----------- frmo=—coo==so===cocccoo=—fmosccosscoofimoosssco==fimso=coo==
gen_title | character varying(5e) | | not null |

Indexes:

"genres_pkey" PRIMARY KEY, btree (gen_title)
Referenced by:

TABLE "has_genre” CONSTRAINT "has_genre_gen_title fkey" FOREIGN KEY (gen_title) REFERENCES genres(gen_title)

\d has_genre

moviesdb=# \d has_genre
Table "public.has_genre"
| Collation | Nullable | Default

movieid integer | not null |
gen_title | character varying(5e) | not null |
Indexes:

"has_genre_pkey" PRIMARY KEY, btree (movieid, gen_title)
Foreign-key constraints:

"has_genre_gen_title_fkey" FOREIGN KEY (gen_title) REFERENCES genres(gen_title)

\d movies

moviesdb=# \d movies
Table "public.movies"

Column | Collation | Nullable | Default

movieid | integer
title character varying(1eee)
integer

moviesdb=# \d ratings
Table "public.ratings"
Column Type | Collation | Nullable | Default

movieid
rating
time numeric
Indexes:

"ratings_pkey" PRIMARY KEY, btree (userid, movieid)

\d tags

moviesdb=# \d tags

Table "public.tags"
| Collation | Nullable | Default

integer
movieid | integer
tag character varying(1000)
time numeric

\d users

moviesdb=# \d users
Table "public.users"”
Column | Type | Collation | Nullable | Default

userid | integer |

C) We must also list the size of our tables. In other words, we will list how many rows
are in each table.

SELECT COUNT (*)
FROM genres;

moviesdb=# SELECT COUNT(*)
moviesdb-# FROM genres;

SELECT COUNT (*)
FROM has_genre;

SELECT COUNT(*)
FROM has_genre;

SELECT COUNT (*)
FROM movies;

SELECT COUNT(*)
FROM movies;

SELECT COUNT (*)
FROM ratings;

10000054

SELECT COUNT (*)
FROM tags;

SELECT COUNT(*)
FROM ratings;

SELECT COUNT(*)
FROM tags,;

SELECT COUNT (*)

FROM users;

moviesdb=# SELECT COUNT(*)
moviesdb-# FROM users;

D) Now we’ll look at some data values. We'll take a look at the first 5 lines of the
‘movies’ table to make sure it looks alright.

SELECT *
FROM movies
LIMIT 5;

SELECT *
FROM movies
LIMIT 5;

Toy Story

Jumanji

Grumpier Old Men

Waiting to Exhale

Father of the Bride Part II

Let’s perform a query that checks for the number of non NULL titles to ensure it is
the same number as the size of the table from the previous query involving the COUNT ()
function.

SELECT COUNT (title)
FROM movies;

moviesdb=# SELECT COUNT(title)
moviesdb-# FROM movies;

Now let's look at the last 5 lines of the ‘movies’ table as well to ensure it also looks
good.

SELECT *

FROM movies
ORDER BY year
DESC LIMIT 5;

moviesdb=# SELECT *
moviesdb-# FROM movies
moviesdb-# ORDER BY year
moviesdb-# DESC LIMIT 5;
movieid

Be Kind Rewind

27 Dresses

88 Minutes

My Mom's New Boyfriend

In the Name of the King: A Dungeon Siege Tale

(5 rows)

We will also test some simple sorting by the attribute ‘year’ to make sure there isn’t
anything strange.
SELECT *
FROM movies
ORDER BY year
LIMIT 5;

moviesdb=# SELECT *
moviesdb-# FROM movies
moviesdb-# ORDER BY year

moviesdb-# LIMIT 5;
movieid

Birth of a Nation,
Intolerance

20,000 Leagues Under the Sea
Father Sergius (Otets Sergiy)
Immigrant, The

(5 rows)

We can also check for NULL values for the attribute ‘year’ in the table ‘movies’.
There should be zero NULL values.

SELECT COUNT (year)
FROM movies;

moviesdb=# SELECT COUNT(year)
moviesdb-# FROM movies;

We can also check for any rows where ‘year = 0’ to ensure there are no NULL values.

SELECT COUNT (year)
FROM movies;
WHERE year = 0;

moviesdb=# SELECT COUNT(year)
moviesdb-# FROM movies
moviesdb-# WHERE year = ©;

Another way to check for NULL values is to check for rows where ‘year > 1500’.

SELECT COUNT (year)
FROM movies
WHERE year > 1500;

moviesdb=# SELECT COUNT(year)
moviesdb-# FROM movies
moviesdb-# WHERE year > 1560;

We can also test the cases where there is no genre associated with a movie (no genres
listed case).

SELECT *
FROM has_genre
WHERE gen_title = ‘(no genres listed)’;

moviesdb=# SELECT *

moviesdb-# FROM has_genre

moviesdb-# WHERE gen_title = '(no genres listed)’;
movieid | gen_title

8606 | (no genres listed)
(1 row)

E) Similarly, we will continue to try to find any unknown or invalid data in any of the
other attributes for the other tables.

SELECT COUNT (rating)
FROM ratings
WHERE rating = 0 OR rating < O0;

moviesdb=# SELECT COUNT(rating)
moviesdb-# FROM ratings
moviesdb-# WHERE rating = @ OR rating < ©;

SELECT *

FROM ratings
WHERE rating < 1
LIMIT 5;

moviesdb=# SELECT *
moviesdb-# FROM ratings
moviesdb-# WHERE rating < 1
moviesdb-# LIMIT 5;

| movieid

1116547591
1115860115
1115858710
1115859173
1115859158

SELECT COUNT (userid)
FROM ratings
WHERE userid < 0;

moviesdb=# SELECT COUNT(userid)
moviesdb-# FROM ratings
moviesdb-# WHERE userid < ©;

SELECT COUNT (movieid)
FROM ratings
WHERE movieid < O0;

moviesdb=# SELECT COUNT(movieid)
moviesdb-# FROM ratings

SELECT COUNT (time)
FROM ratings
WHERE time < O;

oviesdb=# SELECT COUNT(time)
oviesdb-# FROM ratings
oviesdb-# WHERE time < ©;

SELECT *
FROM tags
LIMIT 5;

moviesdb=# SELECT *

moviesdb-# FROM tags

moviesdb-# LIMIT 5;
| movieid

excellent! 1215184638
politics 1188263867
satire 1188263867
chick flick 212 1188263835
hanks 1188263835

SELECT COUNT (userid)
FROM tags
WHERE userid <= 0;

SELECT COUNT(userid)
FROM tags
WHERE userid <= 0;

SELECT COUNT (movieid)
FROM tags
WHERE movieid <= 0;

moviesdb=# SELECT COUNT(movieid)
moviesdb-# FROM tags
moviesdb-# WHERE movieid <= ©;

SELECT COUNT (tag)
FROM tags

WHERE tag IS NULL;

moviesdb=# SELECT COUNT(tag)
moviesdb-# FROM tags
moviesdb-# WHERE tag IS NULL;

SELECT COUNT (time)
FROM tags
WHERE time <= 0;

moviesdb=# SELECT COUNT(time)
moviesdb-# FROM tags
moviesdb-# WHERE time <= @;

F) Now we will find the distribution of the values for the attribute ‘year of table
‘movies’.
SELECT year, COUNT (*)
FROM movies
GROUP BY year
ORDER BY year;

moviesdb=# SELECT year, COUNT(*) 1966
moviesdb-# FROM movies 1967
moviesdb-# GROUP BY year
moviesdb-# ORDER BY year; 1968

|
|
|
1969 |
1970 |
1971 |
1972 |
1973 |
1974 |
1975 |
1976 |
1977 |
1978 |
1979 |
1980 |
1981 |
1982 |
1983 |
1984 |
1985 |
1986 |
1987 |
1988 |
1989 |
L
1991 |
1992 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
1999 |
2000 |
2001 |
2002 |
2003 |
2004 |
2005 |
2006 |
2007 |
2008 |
(94 rows)

G) Now let’s find the distribution of the movies across different decades using the
query below.

SELECT decade, COUNT (*)
FROM

(
SELECT case when year between 1910 and 1919 then

'1910'

when year between 1920 and 1929 then '1920'
when year between 1930 and 1939 then '1930'
when year between 1940 and 1949 then '1940'
when year between 1950 and 1959 then '1950'
when year between 1960 and 1969 then '1960'
when year between 1970 and 1979 then '1970'
when year between 1980 and 1989 then '1980'
when year between 1990 and 1999 then '1990'
when year between 2000 and 2009 then '2000'
end AS decade

FROM movies

t

GROUP BY decade

ORDER BY decade ASC;

SELECT decade, COUNT(*)
FROM
(
SELECT case when year between 1916 and 191% then '1910°'
when year between 1926 and 1929 then '1928'
when year between 1938 and 1939 then '193@°
when year between 1948 and 1949 then '1948@'
when year between 195@ and 1959 then '195@°
when year between 1960 and 1969 then '1968°
when year between 1970 and 1979 then '197@°
when year between 1980 and 1989 then '198@'
when year between 1990 and 1999 then '199@°
when year between 2068 and 2669 then '2@08@°
end AS decade
FROM movies
) t
GROUP BY decade
ORDER BY decade ASC;

decade | count

H) Now we’ll find the distribution of the genres across the movies.

SELECT gen_title, COUNT (*)
FROM has_genre
GROUP BY gen_title;

moviesdb=# SELECT gen_title, COUNT(*)

moviesdb-# FROM has_genre

moviesdb-# GROUP BY gen title;
gen_title

Animation
Documentary
Romance
Mystery
Children
Musical
Film-Noir
Fantasy
Horror
Drama
Action

(no genres listed)
Thriller
Western
Sci-Fi
Comedy
Adventure
War
(20 rows)

I) We will also find the distribution of the ratings values.

SELECT rating, COUNT (*)
FROM ratings

GROUP BY rating;

SELECT rating, COUNT(*)
FROM ratings
GROUP BY rating;

384180
118278
790366
370178
2356676
879764
2875850
585022
5 | 1544812
(18 rows)

J)

i) Now let’s find how many movies have no tags, but have ratings.

SELECT CAST (count (movieid) AS INTEGER) FROM movies
WHERE movieid

NOT IN (SELECT DISTINCT movieid FROM tags)

AND movieid IN (SELECT DISTINCT movieid FROM
ratings) ;

moviesdb=# SELECT CAST(count(movieid) AS INTEGER) FROM movies
moviesdb-# WHERE movieid

moviesdb-# NOT IN (SELECT DISTINCT movieid FROM tags)

moviesdb-# AND movieid IN (SELECT DISTINCT movieid FROM ratings);

ii) Let’s also find how many movies have no ratings, but have tags.

SELECT CAST (count (movieid) AS INTEGER) FROM movies
WHERE movieid

IN (SELECT DISTINCT movieid FROM tags WHERE movieid
NOT IN (SELECT DISTINCT movieid FROM ratings));

moviesdb=# SELECT CAST(count(movieid) AS INTEGER) FROM movies
moviesdb-# WHERE movieid
moviesdb-# IN (SELECT DISTINCT movieid FROM tags WHERE movieid NOT IN (SELECT DISTINCT movieid FROM ratings));

iii) We can also find how many movies have neither tags nor ratings.

SELECT CAST (count (movieid) AS INTEGER) FROM movies
WHERE movieid

NOT IN (SELECT DISTINCT movieid FROM ratings) AND
movieid NOT IN (SELECT DISTINCT movieid FROM tags) ;

moviesdb=# SELECT CAST(count(movieid) AS INTEGER) FROM movies
moviesdb-# WHERE movieid
moviesdb-# NOT IN (SELECT DISTINCT movieid FROM ratings) AND movieid NOT IN (SELECT DISTINCT movieid FROM tags);

iv) And lastly, we shall find how many movies have both tags and ratings.

SELECT CAST (count (movieid) AS INTEGER) FROM movies
WHERE movieid 1IN ((SELECT DISTINCT movieid FROM
ratings) INTERSECT (SELECT DISTINCT movieid FROM
tags)) ;

moviesdb=# SELECT CAST(count(movieid) AS INTEGER) FROM movies
moviesdb-# WHERE movieid IN ((SELECT DISTINCT movieid FROM ratings) INTERSECT (SELECT DISTINCT movieid FROM tags));

We expect that the results from i, ii, iii, and iv will add up to the result of
COUNT (movieid) from the ‘movies’ table. 3080 + 4 + 0 + 7597 = 10,681 which is correct.

CHAPTER 4: QUERY THE DATABASE AND OPTIMIZE THE QUERIES

Now that we are done with testing out the database, we can move forward with
performing analytical queries and optimization.

a) General Queries

1) Find the most reviewed movie, (that is, the movie with the highest number of
reviews). Show the movie id, movie title, and the number of reviews.

In order to perform this request, we will need to JOIN two tables and use multiple
aggregate functions. Before executing the SQL query, | created an index on the attribute
‘movieid’ from the ‘ratings’ table because of the fact that there is an extensive amount of
rows in the ‘ratings’ table. It also cut the running time by nearly 15,000 milliseconds.

CREATE INDEX idx movieid ON ratings (movieid) ;
SELECT m.movieid, title, count_ratings

FROM movies AS m

JOIN (

SELECT COUNT (*) AS count ratings, movieid
FROM ratings

GROUP BY movieid

ORDER BY count_ratings
DESC LIMIT 1) AS t

ON m.movieid = t.movieid;

moviesdb=# CREATE INDEX idx_movieid ON ratings(movieid);
CREATE INDEX
] SELECT m.movieid, title, count_ratings
FROM movies AS m

JOIN (

SELECT COUNT(*) AS count_ratings, movieid
FROM ratings

GROUP BY movieid

moviesdb(# ORDER BY count_ratings

moviesdb(# DESC LIMIT 1) AS t
moviesdb-# ON m.movieid = t.movieid;
movieid | title count_ratings

2) Find the highest reviewed movie (the movie with the most 5-star reviews). Show
the movie id, movie title, and the number of reviews.

Similar to the previous query, we will need to JOIN two tables and use aggregate
functions again, but this time, using the WHERE condition. No index is required for this query
as it has no effect on the execution of the query.

SELECT m.movieid, title, count reviews
FROM movies AS m

JOIN (

SELECT movieid, COUNT(*) AS count_reviews
FROM ratings

WHERE rating = 5

GROUP BY movieid

ORDER BY count_reviews

DESC LIMIT 1) AS t

ON m. movieid = t.movieid;

SELECT m.movieid, title, count_reviews
FROM movies AS m

JOIN (

SELECT movieid, COUNT(*) AS count_reviews
FROM ratings

WHERE rating = 5

GROUP BY movieid

ORDER BY count_reviews
DESC LIMIT 1) AS t
ON m.movieid = t.movieid;

3) Find the number of movies that are associated with at least 4 different genres.
To perform this query, one single subquery is needed with the COUNT () function.

No index is required as this query was executed rather quickly.

SELECT CAST (COUNT (*) AS INTEGER)

FROM (

SELECT COUNT (gen_title) AS genre count
FROM has_genre

GROUP BY movieid) AS t

WHERE genre count >= 4;

moviesdb=# SELECT CAST(COUNT(*) AS INTEGER)
moviesdb-# FROM (

moviesdb(# SELECT COUNT(gen_title) AS genre_count
moviesdb(# FROM has_genre

moviesdb(# GROUP BY movieid) AS t

moviesdb-# WHERE genre_count >= 4;

4) Find the most popular genre across all movies (genre associated with the highest
number of movies).
To execute this query, we can simply use the COUNT () function with its
accompanying GROUP BY and ORDER BY functions on just the ‘has_genre’ table. No index
is required as this is simple counting.

SELECT gen_title, COUNT (gen_ title)
FROM has_genre

GROUP BY gen_title

ORDER BY COUNT

DESC LIMIT 1;

SELECT gen_title, COUNT(gen_title)
FROM has_genre

GROUP BY gen_title

ORDER BY COUNT

DESC LIMIT 1;

5) Find the genres that are associated with the best reviews (genres of movies that
have more high ratings than low ratings). Display the genre, the number of high ratings
(>=4.0), and the number of low ratings (< 4.0).

In order to perform this query, it’ll require multiple NATURAL JOINs within complex
subqueries and between two subqueries. The use of the COUNT () function will also be

required.

SELECT gen_title, high ratings, low_ratings
FROM (

(SELECT gen_title, COUNT(*) AS high ratings
has genre NATURAL JOIN ratings WHERE rating
GROUP BY gen_title) AS high

NATURAL JOIN

(SELECT gen_title, COUNT(*) AS 1low_ratings

FROM
>= 4

FROM

has genre NATURAL JOIN ratings WHERE rating < 4 GROUP

BY gen_title) AS low)
WHERE high ratings > low_ratigs;

SELECT gen_title, high_ratings, low_ratings

FROM (

(SELECT gen_title, COUNT(*) AS high_ratings FROM has_genre NATURAL JOIN ratings WHERE rating >= 4 GROUP BY gen_title) AS hi

NATURAL JOIN

(SELECT gen_title, COUNT(*) AS low_ratings FROM has_genre NATURAL JOIN ratings WHERE rating < 4 GROUP BY gen_title) AS low)

WHERE high_ratings > low_ratings;
gen_title | high_ratings | low_ratings

R .

Animation 275590 | 243522
Crime 826375 | 648582
Documentary 64986 | 38468
Drama 2455297 | 1888901
Film-Noir |
IMAX |
Musical |
Mystery |
Romance |
War |
Western 108365 |
(11 rows)

102694

An attempt at making an index on the attribute ‘rating’ from the table ‘ratings’ was
used. But as you will see, the index had no effect on the execution of this particular query due
to the index not even being used. There was not much of a difference in running times as it
remained relatively consistent. We can know this by using the EXPLAIN ANALYZE
function.

Before creating the index:

EXPLAIN ANALYZE
SELECT gen_title, high_ratings, low_ratings

moviesdb-# FROM (

Imoviesdb(# (SELECT gen_title, COUNT(*) AS high_ratings FROM has_genre NATURAL JOIN ratings WHERE rating >= 4 GROUP BY gen_title) AS high

Imoviesdb(# NATURAL JOIN

Imoviesdb(# (SELECT gen_title, COUNT(*) AS low_ratings FROM has_genre NATURAL JOIN ratings WHERE rating < 4 GROUP BY gen_title) AS low)

moviesdb-# WHERE high_ratings > low_ratings;

Hash Join (cost=620851.49..620856.81 rows=7 width=23) (actual time=46912.746..40944.617 rou:
Hash Cond: ((has_genre.gen_title)::text = (low.gen_title)::text)
Join Filter: ((count(*)) > low.low_ratings)
s Removed by Join Filter: 9
Finalize GroupAggregate (cost=310822.88..310827.95 rows=20 width=15) (actual time=20488.241..20439.855 ro loops=1)
Group Key: has_genre.gen_title
-> Gather Merge (cost=310822.88..310827.55 rows=4@ width=15) (actual time=20408. 20438.966 rows=6@ loops=1)
Workers Planned:
jorkers Launched: 2
-> Sort (cost=309822.86..309822.91 rows=20 width=15) (actual time=20365.961..20365.97
Sort Key: has_genre.gen_title
Sort Method: quicksort Memory: 26kB
Worker ©: Sort Method: quicksort Memory: 26kB
Worker 1: Sort Method: quicksort Memory: 26kB
-> Partial HashAggregate (cost=309822.22..309822.42 r 0 width=15) (actual time=20365.751..20365.772 row
Group Key: has_genre.gen_title
Batches: 1 Memory Usage: 24kB
Worker @: Batches: 1
Worker 1: Batches: 1 K
-> Parallel Hash Join (.52..288108.43 rows=4342759 width=7) (actual time=7488.829..17, 4365613 loops=3)
Hash Cond: (ratings.movieid = has_genre.movieid)
-> Parallel Seq Scan on ratings (cost=8.00..243167.61 rows=2096122 width=4) (actual time=7464. .14096.030 rows=1668561 loops=3)
Filter '4"::double precision)
Rows Removed by Filter: 1664790
-> Parallel Hash (cost: 894.95 rows=12685 width=11) (actual time=4.030..4.031 rows=7188 loo
Buckets: 1 Memory Usage: 1280kB
-> Parallel Index Only Scan using has_genre_pkey on has_genre (cost=0.29..894.95 row 85 width=11) (actual time=e.843..
°
Hash (cost=310028.36..310028.36 row: width=15) (actual time=20504.453..20505.498 rows=20 1oo
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Subquery Scan on low (cost=310023.09..310028.36 rows=20 width=15) (actual time=20564.314..20505.462 rows=20 loops=1)
-> Finalize GroupAggregate (310023.09..310028.16 rows=20 width=15) (actual time=20564.312..20505.455 rows=20 loops=1)
Group Key: has_genre 1.gen_title
-> Gather Merge (cost=310023.69..310027.76 rows=4@ width=15) (actual time=20564.300..20505.467 rows=59 loops=1)
Workers Planned:
Workers Launched: 2
-> Sort (cost=3@9023.07..309023.12 rows=20 width=15) (actual time=20468.963..20408.972 rows=20 loops=3)
Sort Key: has_genre_1.gen_title
Sort Method: quicksort Memory: 26kB
Worker @: Sort Method: quicksort Memor:
Worker 1: Sort Method: quicksort Memor:
Partial HashAggregate (cost=309022.43.
Group Key: has_genre_1.gen_title
Batches: 1 Memory Usage: 24kB
Worker ©: Batches: 1 Memory Usage: 24kB
Worker 1: Batches: 1 Memory Usage: 24kB
-> Parallel Hash Join (cost=1053.52..287573.37 rows=4289812 width=7) (actual time=7488.167..17422.982 rows=4290119 loop:
Hash Cond: (ratings_1.movieid = has_genre_1.movieid)
-> Parallel Seq Scan on ratings ratings_1 243167.61 rows=2070567 width=4) (actual time=7481.538..14170.425 rows=1664790 loops=3)
Filter: (rating < '4'::double precision)
Rows Removed by Filter: 1668561

Parallel Hash (cost=894.95..894.95 rows=12685 width=11) (actual time=6. .399 rows=7188 loops=3)
Buckets: 32768 Batches: 1 Memory Usage: 1280kB
-> Parallel Index Only Scan using has_genre_pkey on has_genre has_genre 1 (cost=.29..894.95 rows=12685 width=11) (actual time=0.030..7.538 rows=2156

4 loops=1)
Heap Fetches: @
Planning Time: 1.037 ms
Execution Time: 40944.978 ms
(57 rows)

After creating the index:

b=# CREATE INDEX idx_rating on ratings(rating);
INDEX
EXPLAIN ANALYZ!
SELECT gen_title, high_ratings, low_ratings
FROM (
(SELECT gen_title, COUNT(*) AS high_ratings FROM has_genre NATURAL JOIN ratings WHERE rating >= 4 GROUP BY gen_title) AS high
NATURAL JOIN
(SELECT gen_title, COUNT(*) AS low_ratings FROM has_genre NATURAL JOIN ratings WHERE rating < 4 GROUP BY gen_title) AS low)
WHERE high_ratings > low_ratinj

Hash Join (cost=620851.49..620856.81 ro idth=23) (actual time=42176.486..42202.798 rows=11 loops=1)
Hash Cond: ((has_genre.gen_title)::text = (low.gen_title)::text)
Join Filter: () w.low_ratings)

width=15) (actual time=20988.866

0 width=15) (actual time=20988.851..21014.287 r

@ width=15) (actual time=20926.619..20926.627 rows=19 loop:

Memory: 26kB
Sort Method: quic
Worker 1: Sort Method: quic
-> Partial HashAggregate (co: 9 5 20 width=15) (actual time=20926.433..20926.447 rows=19 loops=3)
y: has_genre.gen_title
1 Memory Usage: 24kB
Worker @: Batches: 1
Worker 1: Batches: 1
Parallel Hash Join 5 42759 width=7) (actual time=7998.413..17871.686 rows=4365613 loo
Hash Cond: (ratil
-> Parallel Seq Scan on rating t J 096122 width=4) (actual time=7993.276..14659.155 rows=1668561 loo
Filter: (rating >= ' jouble
Rows Rem
age: 1280kB
s_genre_pkey on has_genre (cos’ E 8 g ..5.577 rows=21564 loops=1)

ets: 1024 M
Subquery Scan on low (cost=310023
-> Finalize GroupAggregate

has_genre_1.gen_title

(c
Workers Planne
Workers Launched
2 rows=20 width=
1.gen_title

Sort Method: quicksort Memory: 26kB

Worker @: Sort Method: quicksort Memory: 26kB

Worker 1: v Memory: 26kB

-> Partial HashAggregate .43..30e9022 rows=20 width=15) (actual time=21113.867..21113.880 rows=20 lo
Group has_genre_1.gen_title
Batches: 1 Memory Usag
Worker @: Batche Usage: 24kB
Worker 1: Batche Usage
-> Parallel Hash Join r) (actual time=8134 .18115.025 rows=4290119 loop:

Hash Cond: (ratin
Parallel Seq ¢ .61 rows=2078567 width=4) (actual time=8126.842..14879.17@ rows=1664798 loo|
Filter: (rating < '4'::double precision)
Rows Removed by Filter: 1668561

= r 85 width=11) (actual time=7.174..7.175 rows=7188 loops=3)

: 1280kB

enre_pkey on has_genre has_genre_1 (cost=0.29..894.95 rows=12685 width=11) (actual time=0.835..8.512 ro
4 1oop:

Heap Fetches: @

Planning Tis
Execution Tim
(57 ro

6) Find the genres that are associated with the most recent movies (genres that have
more recent movies than old movies). Display the genre, the number of recent movies
(>=2000), and the number of old movies (< 2000).

Similar to the previous query, this one will also require multiple NATURAL JOINSs
within complex subqueries and between two subqueries. The use of the COUNT () function
will also be required

SELECT gen_title, recent, old

FROM (

(SELECT gen_title, COUNT(*) AS recent FROM has genre
NATURAL JOIN movies WHERE year >= 2000 GROUP BY
gen_title) AS recent

NATURAL JOIN

(SELECT gen_title, COUNT(*) AS old FROM has_genre
NATURAL JOIN movies WHERE vyear < 2000 GROUP BY
gen_title) AS old)

WHERE recent > old;

SELECT gen_title, recent, old

FROM (

(SELECT gen_title, COUNT(*) AS recent FROM has_genre NATURAL JOIN movies WHERE year >= 2080 GROUP BY gen_title) AS recent
NATURAL JOIN

(SELECT gen_title, COUNT(*) AS old FROM has_genre NATURAL JOIN movies WHERE year < 2080 GROUP BY gen_title) AS old)

WHERE recent > old;
gen_title | recent | old

Documentary | 252 | 23
(1 row)

Another attempt at making an index was made on the attribute ‘year’ from the table
‘movies’. But as you will see, the index had no effect on the execution of this particular query
due to the index not even being used. There was not much of a difference in running times as
it remained relatively consistent. We can know this by using the EXPLAIN ANALYZE
function.

Before creating the index:

EXPLAIN ANALYZE
SELECT gen_title, recent, old
FROM (
(SELECT gen_title, COUNT(*) AS recent FROM has_genre NATURAL JOIN movies WHERE year >= 2000 GROUP BY gen_title) AS recent
NATURAL JOIN
(SELECT gen_title, COUNT(*) AS old FROM has_genre NATURAL JOIN movies WHERE year < 2000 GROUP BY gen_title) AS old)
WHERE recent > old;
QUERY PLAN

Hash Join
Hash Cond: ((has_genre.gen_title)::text = (old.gen_title)::text)
Join Filter: ((count(*)) > old.old)
Rows Removed by Join Filter: 18
-> HashAggregate (cost=674.19..674.39 rows=26 width=15) (actual time=13.736..13.743 rows=19 loops=1)
Group Key: has_genre.gen_title
Batches: 1 Memory Usage: 24kB
-> Hash Join (cost=253.13..641.39 rows=6559 width=7) (actual time=4.295..10.766 rows=7166 loops=1)
Hash Cond: (has_genre.movieid = movies.movieid)
-> Seq Scan on has_genre (cos ©6..331.64 rows=21564 width=11) (actual time=0.022..2.566 rows=21564 loops=1)
-> Hash (cost=212.51..212.51 row 249 width=4) (actual time=2.699..2.70@ rows=3249 loops=1)
Buckets: 4896 Batches: 1 Memory Usage: 147kB
-> Seq Scan on movies (cost=6.60..212.51 rows=3249 width=4) (actual time=6.395..1.888 rows=3249 loops=1)
Filter: (year >= 2000)
Rows Removed by Filter: 7432
-> Hash (cost=769.11..769.11 rows=20 width=15) (actual time=15.491..15.493 rows=20 loops=1)
Buckets: 1624 Batches: 1 Memory Usage: 9kB
-> Subquery Scan on old (cost=768.71..769.11 rows=20 width=15) (actual time=15.461..15.469 rows=26 loops=1)
-> HashAggregate (cost=768.71..768.91 rows=2@ width=15) (actual time=15.459..15.464 rows=20 loops=1)
Group Key: has_genre_1.gen_title
Batches: 1 Memory Usage: 24kB
-> Hash Join (cost=365.41..693.68 rows=15005 width=7) (actual time=4.681..11.173 rows=14458 loops=1)
Hash Cond: (has_genre_1l.movieid = movies_1.movieid)
-> Seq Scan on has_genre has_genre_1 (cost=0.60..331.64 rows=21564 width=11) (actual time=0.032..1.96@ rows=21564 loops=1)
-> Hash (cost=212.51..212.51 rows=7432 width=4) (actual time=3.998..3.999 rows=7432 loops=1)
Buckets: 8192 Batches: 1 Memory Usage: 326kB
-> Seq Scan on movies movies_1 (cost=0.0@..212.51 rows=7432 width=4) (actual time=0.015..2.167 rows=7432 loops=1)
Filter: (year < 2000)
Rows Removed by Filter: 3249
Planning Time: ©.975 ms
Execution Time: 29.484 ms
(31 rows)

After creating the index:

moviesdb=# EXPLAIN ANALYZE
moviesdb-# SELECT gen_title, recent, old
moviesdb-# FROM (
moviesdb(# (SELECT gen_title, COUNT(*) AS recent FROM has_genre NATURAL JOIN movies WHERE year >= 2000 GROUP BY gen_title) AS recent
Imoviesdb(# NATURAL JOIN
moviesdb(# (SELECT gen_title, COUNT(*) AS old FROM has_genre NATURAL JOIN movies WHERE year < 2600 GROUP BY gen_title) AS old)
moviesdb-# WHERE recent > old;
QUERY PLAN

Hash Join (cost=1392.11..1392.56 rows=7 width=23) (actual tii .080..28.089 rows=1 loops=1)
Hash Cond: ((has_genre.gen_title)::text = (old.gen_title)::text)
Join Filter: ((count(*)) > old.old)
Rows Removed by Join Filter: 18
-> HashAggregate (cost=622.75..622.95 rows=20 width=15) (actual time=13.154..13.159 rows=19 loops=1)
Group Key: has_genre.gen_title
Batches: 1 Memory Usage: 24kB
-> Hash Join (cost=201.69..589.96 rows=6559 width=7) (actual time=3.710..10.284 rows=7106 loops=1)
Hash Cond: (has_genre.movieid = movies.movieid)
-> Seq Scan on has_genre (cost=0.00..331.64 rows=21564 width=11) (actual time=8.015..2.591 rows=21564 loops=1)
-> Hash (cost=161.68..161.08 rows=3249 width=4) (actual time=1.959..1.960 rows=3249 loops=1)
Buckets: 4896 Batches: 1 Memory Usage: 147kB
-> Bitmap Heap Scan on movies (cost=41.46..161.88 rows=3249 width=4) (actual time=0.194..1.030 rows=3249 loops=1)
Recheck Cond: (year >= 2660)
Heap Blocks: exact=56
-> Bitmap Index Scan on idx_year (cost=8.6@..40.65 rows=3249 width=0) (actual time=6.175..0.175 rows=3249 loops=1)
Index Cond: (year >= 2000)
-> Hash (cost=769.11..769.11 rows=20 width=15) (actual time=14.889..14.890 rows=20 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Subquery Scan on old (cost=768.71..769.11 rows=2@ width=15) (actual time=14.874..14.879 rows=2@ loops=1)
-> HashAggregate (cost=768.71..768.91 rows=20 width=15) (actual time=14.873..14.876 rows=20 loops=1)
Group Key: has_genre_1.gen_title
Batches: 1 Memory Usage: 24kB
-> Hash Join (cost=305.41..693.68 rows=15005 width=7) (actual time=4.180@..10.802 rows=14458 loops=1)
Hash Cond: (has_genre_1.movieid = movies_1.movieid)
-> Seq Scan on has_genre has_genre_1 (cost=0.00..331.64 rows=21564 width=11) (actual time=0.027..1.721 rows=21564 loops=1)
-> Hash (cost=212.51..212.51 rows=7432 width=4) (actual time=4.099..4.100 rows=7432 loops=1)
Buckets: 8192 Batches: 1 Memory Usage: 326kB
-> Seq Scan on movies movies_1 (cost=0.80..212.51 rows=7432 width=4) (actual time=0.014..2.265 rows=7432 loops=1)
Filter: (year < 2000)
Rows Removed by Filter: 3249
Planning Time: ©.891 ms
Execution Time: 28.309 ms
(33 rows)

b) Debiasing the Ratings of Users

Now we will move on to more complicated queries. We will attempt to find the top 10
movies (with attributes ‘movieid’ and ‘title’) that have received the most biased ratings.

What does having biased ratings mean? Suppose a user is always positively biased and
rates all movies with 5 stars, or always negatively biased and rates movies with 1 or 2 stars.
We want to find these users and de-bias their ratings, that is, find the average rating for a
movie after neutralizing the rating of these users. There are several approaches to neutralize
a biased rating. For example, we can remove these ratings from the database. Or, we can
replace the biased rating with 3.5, or with the average rating of the movie at that moment.
We can also reduce the weight of the rating of biased users when we want to compute the
average rating of a movie.

In this approach, we will try to identify the biased users by computing the difference
between their rating and the average rating of the movie. We will save the difference in an
additional column in the ‘ratings’ table. We will then update their rating with the average
rating of the movie and we will also update the timestamp. After we do this operation for all
users, we will then perform the same task one more time, now using the new average rating
for each movie. We may have to repeat this process more than 2 times if necessary.

At the end, we will try to extract the average rating of a movie and identify the top 10
movies that had received the most biased ratings.

Step 1) Find the difference between a user's rating and the average rating of the
movie he has rated.

We will do this by creating a new table, ‘ratings_with_diff’, that includes all columns
from table ‘ratings’, plus 2 new columns: the average rating and the difference (rating -
average rating).

First, we create the table ‘ratings_with_diff’ using the same attributes of the table
‘ratings’. This might take a while as the command prompt is essentially making a copy of the
table ‘ratings’ which has 10000054 rows. We can check if the table has been made using the
\d function in the command prompt.

CREATE TABLE ratings with diff AS TABLE ratings;

moviesdb=# \d

List of relations
Schema | Owner

genres postgres
public has_genre postgres
public | movies postgres
public | ratings postgres
public | ratings_with_diff postgres
public | tags postgres
public users postgres
(7 rows)

Once the new table has been created, alter the table to add columns ‘avg_rating” and
‘difference’. The schema is now ratings_with_diff(userid, movieid, rating, time, avg_rating,
difference). We can check this with the command \d+ ratings_with_diff.

ALTER TABLE ratings with diff ADD COLUMN avg_rating
DOUBLE PRECISION;
ALTER TABLE ratings with diff ADD COLUMN difference
DOUBLE PRECISION;

moviesdb=# \d+ ratings_with_diff
Table "public.ratings_with_diff"
Column Collation | Nullable | Default | Storage | Stats target | Description

userid integer
movieid integer plain

rating real plain
time numeric main
avg_rating | double precision plain
difference | double precision plain
Access method: heap

Now we’ll create the table ‘avg_ratings’ with attributes ‘movieid” and ‘avg_rating’
which will contain the average rating for each movie, hence saving time populating the table
‘ratings_with_diff’ later on. We'll populate this table using data from the ‘ratings’ table and

the use of the AVG () function. Like before, we can also check if the table was created and
if the table contains the desired columns made. 10677 rows should be affected from these
queries.

CREATE TABLE avg_ratings (movieid NUMERIC, avg_rating
DOUBLE PRECISION) ;

INSERT INTO avg_ratings SELECT movieid, AVG(rating)
AS avg_rating FROM ratings GROUP BY movieid;

List of relations

avg_ratings postgres
genres postgres
has_genre postgres
movies postgres
ratings postgres
ratings_with_diff postgres
tags postgres
users postgres

Table "public.avg ratings"
Collation | Nullable | Default | Storage | Stats target | Description

movieid | numeric
avg_rating | double precision | plain
Access method: heap

We then UPDATE the ‘avg_rating’ in the ‘ratings_with_diff’ table with the averages
from the ‘avg_ratings’ table. This will also take a while as 10000054 rows will be updated.

UPDATE ratings with diff SET avg_rating =
avg_ratings.avg_rating

FROM avg ratings

WHERE ratings with diff.movieid =
avg_ratings.movieid;

We then UPDATE the ‘difference’ column. Once again,
this will take a while as 10000054 rows are being
updated.

UPDATE ratings with diff SET difference = rating -
avg_rating;

Step 2) Update the rating of users whose rating difference (absolute value) is > 3.
This will involve a subquery within the SET function. 40498 rows should be updated
from this query.

UPDATE ratings _with diff r
SET rating = (SELECT avg _rating FROM avg ratings
WHERE r.movieid = avg_ratings.movieid)

WHERE (@difference > 3;

Step 3) Find the new difference between a user's rating and the average rating of
the movie they have rated.

To perform this step, we need to first take the new average of each movie. This
information will be stored in a new table called ‘avg_ratings2’. We can, again, check if this was
performed successfully with the \d function in the command prompt. 10677 rows should be
added.

CREATE TABLE avg ratings2 (movieid NUMERIC, avg rating
DOUBLE PRECISION) ;

INSERT INTO avg_ratings2 SELECT movieid, AVG(rating)
AS avg_rating FROM ratings with diff GROUP BY
movieid;

List of relations

avg_ratings postgres
avg_ratings2 postgres
genres postgres

has_genre postgres
movies postgres
ratings postgres
ratings_with_diff postgres
tags postgres
users postgres

Next, UPDATE the table ‘ratings_with_diff’ with the new averages from the
‘avg_ratings2’ table. This will take a while as 10000054 rows will be affected.

UPDATE ratings _with diff

SET avg_rating = avg_ratings2.avg _rating

FROM avg ratings2

WHERE ratings with diff.movieid =
avg_ratings2.movieid;

Then, we find the new difference. This will also take
a while because of the 10000054 rows that are in this
table.

UPDATE ratings with diff SET difference = rating -
avg_rating;

Step 4) Again, update the rating of users whose rating difference (absolute value) is
> 3.

This is basically the same query as in step 2 except with the table ‘avg_ratings2’. 751
rows should be updated.

UPDATE ratings with diff r

SET rating = (SELECT avg _rating FROM avg ratings2
WHERE r.movieid = avg_ratings2.movieid)

WHERE (@difference > 3;

We can check how the table ‘ratings_with_diff’ should look by viewing the first 5 rows
of the table. Please note that the data itself might not match due to the lack of cohesive
ordering in this table. Just make sure the attributes are all there and that the math for the
‘difference’ column is correct.

SELECT * FROM ratings with diff LIMIT 5;

moviesdb=# SELECT * FROM ratings_with_diff LIMIT 5;
userid | movieid rating avg_rating difference

4.220209 965214344 | 4.278077543128199 .85786842142409743
4.09312376 886301554 | 4.090626288538033 .05938868630414618
4.157426 886301386 | 4.255335048668535 .09790916823640572
4.0851575 886302283 4.111831343868744 .18667387316561872
4.367142 991775561 4.3871687372303773 .91996517183380231

Step 5) Find the average rating for each movie before the de-biasing (from the
‘ratings’ table) and the average rating for each movie after the de-biasing (from the
‘ratings_with_diff’ table). List the top 10 movies that have the biggest difference between
these two average ratings. (These are the movies that had the most biased ratings.)

This will require a very complex query containing 3 subqueries that all come together
with the NATURAL JOIN function. Make sure the selected tables are in the right order and
watch out for spelling errors. Please note that the movies may not be in order. As long as the
movies match, the de-biased query is complete.

SELECT movieid, title, original, debiased,
@Qoriginal-debiased AS bias FROM

(SELECT movieid, title FROM movies) tl

NATURAL JOIN

(SELECT movieid, avg_rating AS original FROM
avg_ratings) t2

NATURAL JOIN

(SELECT movieid, AVG (rating) AS debiased FROM
ratings with diff GROUP BY movieid) t3

ORDER BY bias DESC LIMIT 10;

The top 10 movies with the most biased ratings:

moviesdb=# SELECT movieid, title, original_rating, debiased_rating, @original_rating-debiased_rating AS bias_rating FROM
moviesdb-# (SELECT movieid, title FROM movies) AS ti
-# NATURAL JOIN
(SELECT movieid, avg_rating AS original_rating FROM avg_ratings) AS t2
-# NATURAL JOIN
(SELECT movieid, AVG(rating) AS debiased rating FROM ratings_with_diff GROUP BY movieid) AS t3
-# ORDER BY bias_rating DESC LIMIT 16;

original_rating

|
+
Human Condition I, The (Ningen no joken I) | 3.59375 4.173828125 ©.586078125
Time Changer | 1.9285714285714286 1.4897959232330322 ©.4387755053383964
Bizarre, Bizarre (Dr‘[le de drame ou L'Gtrange aventure de Docteur Molyneux) | 3.5625 3.9453125 ©.3828125
Kid Brother, The | 3.5588235294117645 3.9186851277067889 | ©.3598615982953244
Samurai Rebellion (3[i-uchi: Hairy[tsuma shimatsu) | 4.05 4.495000019073486 | ©.35500001907348633
Holy Mountain, The (Montata sagrada, La) | 4.05 | 4.405000019073486 | ©.35508001987348633
Cruel Romance, A (Zhestokij Romans) | 3.5555555555555554 3.895061731338501 | ©.3395061757829456
Accattone | 3.642857142857143 3.979591829436166 | ©.3367346865790233

| 3.716666666666667 4.038333336512248 | ©.32166666984558123

| 3.8863636363636362 4.194214885885065 | ©.30785124952142917

Crowd, The
0dd Man Qut

Step 6) EXTRA: Who is the most biased user?

This is an extra step that is not required, but can be useful practice in coding in SQL
and completing complicated queries. To complete this query, we can define the most biased
user as having the most rows changed during de-biasing steps. Thus, a much simpler query
with subqueries is needed and we would need to COUNT () the number of rows this user
has between the ‘ratings’ and ‘ratings_with_diff’ tables.

SELECT userid, count(*) FROM

(SELECT wuserid, movieid, rating AS original FROM
ratings with diff) tl

NATURAL JOIN

(SELECT wuserid, movieid, rating AS debiased FROM
ratings) t2

WHERE original <> debiased

GROUP BY userid

ORDER BY count(*) DESC

LIMIT 1;

The most biased user:

moviesdb=# SELECT userid, COUNT(*) FROM

moviesdb-# (SELECT userid, movieid, rating AS original FROM ratings_with_diff) AS t1
moviesdb-# NATURAL JOIN

moviesdb-# (SELECT userid, movieid, rating AS debiased FROM ratings) AS t2
moviesdb-# WHERE original <> debiased

moviesdb-# GROUP BY userid

moviesdb-# ORDER BY COUNT(*) DESC
moviesdb-# LIMIT 1;
userid | count

CHAPTER 5: DISCUSSION

To conclude this project, | will discuss some final observations and assumptions.

In the beginning of the project, | had made the narrow-minded assumption that the
E/R design of the database only involved three tables from the three files that were initially
given. After more thorough analysis and thought processes, | edited my E/R diagram to match
the designated design of the database. From now on, | should refrain from assuming that the
number of tables in a database equals the number of files of data given.

| didn’t seem to find any constraints while designing the database, except for having to
SET the encoding when loading data into tables that had the movie title. The reason this
was a constraint for me was because of various movie titles that would have special
characters in it that would make processing the data difficult and both the Python prompt
and command prompt would run into encoding errors.

| ran into a significant amount of redundancy in testing my database, specifically when
using the COUNT () function to complete various queries. There was also an extensive
amount of redundancy in checking for NULL values throughout all the tables. Besides those
two key redundancy parts, there weren't many errors that | ran into.

The percentage of unknown values in the attributes is close to zero, if we include the
movie that had no genres listed. Besides that, there weren’t any NULL nor missing values in
my database.

There wasn’t much benefit from using indexes in my case. They weren’t even used
after creating them, which suggests the database must need to be a lot more bigger in order
for Postgres to be resorted to using an index.

The biggest challenge | ran into during this project was simply loading the data into
the tables. | had to constantly DROP and reCREATE tables due to the primary key
constraints on certain tables. Then | also ran into problems with coding in Python to split
strings and appending lines properly. | spent most of the time during this portion of loading
the data in coding the Python scripts to process the necessary data needed for the tables.

| also ran into challenges in testing the database as some of these queries were hard
to complete. | had to resort to Google to look up various ways to code subqueries and learn
new SQL functions. It was definitely helpful to learn new tricks in SQL as it made my SQL code
look more concise and organized.

CCcC

