
Design, Load, and Explore a
Movies Database

Perla Molina
Data Science Major

CS 333 Intro to Database Systems
Fall 2021



CHAPTER 1: PROJECT DESCRIPTION

a) Goal of the Project
The goal of this project is to practice the full circle of exploring a dataset. Exploring a

dataset includes: designing, building, and using a database that reflects the description of the
given dataset. The general steps can include but are not limited to: drawing an E/R diagram for
the design of the database in order to perceive a visual of the database; writing SQL code in
order to test, explore, query, and optimize the database; and summarizing the steps of the work
with conclusions in order to report the entirety of the project. There are three phases to this
project: 1) Design the database, 2) Build the database, 3) Use the database.

b) Data Exploration
The database is titled ‘movies’ with input files: movies.txt, size 490 KB; ratings.txt, size

229,596 KB; README.html, size 12 KB, and tags.txt, size 3,221 KB. ‘Movies’ has attributes:
MovieID, Title, and Genres. ‘Ratings’ has attributes: UserID, MovieID, Rating, and Timestamp.
And lastly, ‘Tags’ has attributes: UserID, MovieID, Tag, and Timestamp.

CHAPTER 2: DATABASE DESIGN

a) E/R Diagram
There are three entity sets: movies, genres, and users with three relationship sets: tags,

ratings, and has_genres. The first entity set, ‘movies’ connects to the relationship sets ‘ratings’
and ‘tags’ because they all contain the attribute key of ‘movieid’. The second entity set, ‘genres’
connects to the relationship set ‘has_genres’ because they both contain the attribute key of
‘movieid’. The third entity set, ‘users’ also connects to the relationship sets ‘ratings’ and ‘tags’
because they all contain the attribute key of ‘userid’.

The attributes of this database include: ‘userid’, which is the unique identification
number of the user that either rated or tagged the movie; ‘movieid’, which is the unique and
real MovieLens identification number of the movie; ‘title’, which by policy, should be entered
identically to those found in IMDB; ‘year’ for the year the movie title was released just as shown
in IMDB as well (however, both ‘title’ and ‘year’ have been entered manually from the original
dataset, so errors and inconsistencies may exist); ‘gen_title’, which is all the genres that came
from the Movies.txt file in a pipe-separated list, and are selected from the following: Action,
Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir,
Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western; ‘rating’, which is made on a
5-star scale with half-star increments, given by a user; ‘tag’, which is a user generated metadata
about movies, each typically a single word or short phrase, determined by each user; and lastly,
‘time’, which is a timestamp represented in seconds since midnight Coordinated Universal Time
(UTC) of January 1, 1970.

Here is the E/R diagram which I have come up with:



b) Logical Schema
Here is a list of the logical schemas for the entity sets from the E/R diagram.

● movies(movieid, title, year)
● genres(gen_title)
● users(userid)

Here is a list of the logical schemas for the relationship sets from the E/R diagram.
● ratings(userid, movieid, rating, time)
● tags(userid, movieid, tag, time)
● has_genre(movieid, gen_title)

Entity set ‘movies’ has attributes: movieid - the primary key, title, and year. Entity set
‘genres’ has only one attribute, which is ‘gen_title’ that is also the primary key. Entity set
‘users’ also contains only one attribute, which is ‘userid’ that is also its primary key.
Relationship set ‘ratings’ has attributes: userid - the primary key, movieid - also the primary
key, rating, and time. Relationship set ‘tags’ has attributes: userid - the primary key, movieid -
also the primary key, tag, and time. The relationship set ‘has_genre’ has attributes movieid
and gen_title, which are both the primary keys.

CHAPTER 3: LOAD DATA AND TEST THE DATABASE

a) Load Data



Now we are going to code SQL queries to load the data into a database and test it.

i) Create A New Database:
First, we create a new database titled, ‘moviesdb’ in the terminal.

createdb -U postgres moviesdb

After it has been created, it needs to be accessed in order to start loading the data.

psql -U postgres moviesdb

ii) Create the Tables From the Logical Schema
Now we are ready to start creating the tables of the schema and loading the data.

They do not need to be created in this exact order nor all at once because loading the data
from the .txt files into the relationship tables will sometimes require an extra step of dropping
an entity set table using the DROP TABLE SQL command in order to properly load the data
from these files into the table without errors. (After loading the data, we can re-create that
previously dropped entity set table to continue loading data for it.) We first create the tables
for the entity sets, movies, genres, and users.

For the ‘movies’ table, this is the SQL query that will be used to create it.

CREATE TABLE movies (
movieid INTEGER PRIMARY KEY,
title VARCHAR(50),
year INTEGER
);

For the ‘genres’ table, this is the SQL query that will be used to create it.

CREATE TABLE genres (
gen_title VARCHAR(50) PRIMARY KEY
);

For the ‘users’ table, this is the SQL query that will be used to create it.

CREATE TABLE users (
userid INTEGER PRIMARY KEY
);

Now to create the relationship tables, it’ll be slightly different from creating the entity
set tables as we will need to be referencing primary key attributes from them. Similar to
before, these tables do not need to be created in this exact order. However, there is no need
to drop these relationship tables when loading the data.

To create the ‘ratings’ table, we will need to use this SQL query.

CREATE TABLE ratings (
userid INTEGER,
movieid INTEGER,



rating REAL,
time NUMERIC,
PRIMARY KEY (userid, movieid),
FOREIGN KEY (userid) REFERENCES users(userid),
FOREIGN KEY (movieid) REFERENCES movies(movieid)
);

To create the ‘tags’ table, we will need to use this SQL query.

CREATE TABLE tags (
userid INTEGER,
movieid INTEGER,
tag VARCHAR(1000),
time NUMERIC,
PRIMARY KEY (userid, movieid),
FOREIGN KEY (userid) REFERENCES users(userid),
FOREIGN KEY (movieid) REFERENCES movies(id)
);

To create the ‘has_genre’ table, we will need to use this SQL query.

CREATE TABLE has_genre (
movieid INTEGER,
gen_title VARCHAR(50),
PRIMARY KEY (movieid, gen_title),
FOREIGN KEY (movieid) REFERENCES movies(movieid),
FOREIGN KEY (gen_title) REFERENCES genres(gen_title)
);

iii) Load the Data From Input Files
Now that we have our tables ready, we can start loading the data into them. Before

doing so, it’s important to make sure all files of this database are in the same folder (such as
‘project files’) where we will query from.

From all the tables, only 'ratings' is ready to be loaded from its corresponding .txt file
right away with the COPY SQL command.

\COPY ratings(userid, movieid, rating, time) FROM
'project files/ratings.txt' WITH DELIMITER ':';

From this command, there should be 10000054 rows copied into table ‘ratings’. If an
error pops up, dropping the tables ‘users’ and ‘movies’ might need to be done first and those
tables will need to be re-created after ‘ratings’ has been loaded, otherwise, we can move
forward with the rest.

For table ‘tags’, I used a python script that edited its corresponding text file and
appended its data into a new tags.csv file. The purpose of this step is to help with loading the
data using the COPY command because certain tags may contain the ':' symbol in their 'Tag'
field. However, the ':' symbol is used as a delimiter in that file, too. Thus, the text file needs to



be edited where we’ll have a row show like this: UserID::MovieID::Tag::Timestamp. This is so
the COPY command can skip ':' symbols found in the 'Tag' field. Once that is cleared, we can
load the data into the ‘tags’ table with the command.

\COPY tags(userid, movieid, tag, time) FROM 'project
files/tags.csv' WITH DELIMITER ':';

From this command, there should be 95580 rows copied into table ‘tags’. If an error
pops up, dropping the tables ‘users’ and ‘movies’ might need to be done first and those
tables will need to be re-created after ‘tags’ have been loaded, otherwise, we can move
forward with the rest.

For table ‘users’, there’s no need to write an external python script to load the data
from a file. To populate the data, we do so by reading the unique users found in tables
'ratings' and 'tags'. To properly do this without complicated queries or commands, I first
dropped the table ‘users’.

DROP TABLE users CASCADE;

Then I used this SQL query to populate users from table ‘ratings’ into a table called
‘users2’.

CREATE TABLE users2 AS SELECT DISTINCT userid FROM
ratings;

From this query, 69878 users should be copied into table ‘users2’. After this, I inserted
unique users from table ‘tags’ into ‘users2’.

INSERT INTO users2
SELECT DISTINCT userid FROM tags;

From this query, 4009 new users should be added to table ‘users2’. From this, there
will be duplicates in ‘users2’, which is why distinct users will be populated from this table into
our actual ‘users’ table that will be used in this database.

CREATE TABLE users AS SELECT DISTINCT userid FROM
users2;

Now there should be a total of 71567 unique users in table ‘users’ without any
duplicates whatsoever. Now we are free to delete or drop the table ‘users2’.

For table ‘genres’, I simply created a new text file title ‘genres.txt’ and manually typed
all 20 genres into each line, including ‘(no genres listed)’. Then the text file was used to easily
populate the data into its corresponding table using the COPY command.

\COPY genres(gen_title) FROM 'project
files/genres.txt';

For table ‘movies’, I used a python script that edited its corresponding text file and
appended its data into a new cleanedMovies.txt file. The purpose of this step is to help with



loading only the relevant data, which is ‘movieid’, ‘title’, and ‘year’ from the original text file
that contained extra information and structure that is not needed for this table. I also decided
to use the ‘%’ symbol as a separator in the new cleanedMovies.txt file to make loading easier
and visually less confusing. But before using the COPY command to load the data, I needed
to set the encoding using this command ‘SET CLIENT_ENCODING TO 'utf8';’ to
enable Postgres to process data with accents or other language writings in movie titles.

SET CLIENT_ENCODING TO 'utf8';
\COPY movies(movieid, title, year) FROM 'project

files/cleanedMovies.txt' WITH DELIMITER '%';

From these commands, there should be 10681 rows copied into table ‘movies’. Make
sure to run the SET command line first before running the COPY command, otherwise, an
encoding error will occur.

Lastly, for table ‘has_genre’, I also had to use another python script that processed the
necessary information from the original movies.txt file, which is ‘movieid’ and ‘gen_title’. The
‘%’ symbol was again used as a separator to make loading easier and visually less confusing.
Once, that has been processed, the COPY command will be used again to load the data.

\COPY has_genre(movieid, gen_title) FROM 'project
files/has_genres.txt' WITH DELIMITER '%';

After the data is loaded, there should be 21564 rows copied into the ‘has_genre’
table. And now we are done with loading the data into all the tables.

b) Test the Database
We move on to test our database. In order to verify that the data has been

successfully loaded, we must run certain SQL queries to ensure that the database is up and
ready to use for analysis.

A) First, we list our tables using the \d function.

\d



B) Then, we list the data types of each table.

\d genres

\d has_genre

\d movies

\d ratings



\d tags

\d users

C) We must also list the size of our tables. In other words, we will list how many rows
are in each table.

SELECT COUNT(*)
FROM genres;

SELECT COUNT(*)
FROM has_genre;



SELECT COUNT(*)
FROM movies;

SELECT COUNT(*)
FROM ratings;

SELECT COUNT(*)
FROM tags;

SELECT COUNT(*)



FROM users;

D) Now we’ll look at some data values. We’ll take a look at the first 5 lines of the
‘movies’ table to make sure it looks alright.

SELECT *
FROM movies
LIMIT 5;

Let’s perform a query that checks for the number of non NULL titles to ensure it is
the same number as the size of the table from the previous query involving the COUNT()
function.

SELECT COUNT(title)
FROM movies;



Now let's look at the last 5 lines of the ‘movies’ table as well to ensure it also looks
good.

SELECT *
FROM movies
ORDER BY year
DESC LIMIT 5;

We will also test some simple sorting by the attribute ‘year’ to make sure there isn’t
anything strange.

SELECT *
FROM movies
ORDER BY year
LIMIT 5;



We can also check for NULL values for the attribute ‘year’ in the table ‘movies’.
There should be zero NULL values.

SELECT COUNT(year)
FROM movies;

We can also check for any rows where ‘year = 0’ to ensure there are no NULL values.

SELECT COUNT(year)
FROM movies;
WHERE year = 0;

Another way to check for NULL values is to check for rows where ‘year > 1500’.

SELECT COUNT(year)
FROM movies
WHERE year > 1500;



We can also test the cases where there is no genre associated with a movie (no genres
listed case).

SELECT *
FROM has_genre
WHERE gen_title = ‘(no genres listed)’;

E) Similarly, we will continue to try to find any unknown or invalid data in any of the
other attributes for the other tables.

SELECT COUNT(rating)
FROM ratings
WHERE rating = 0 OR rating < 0;

SELECT *
FROM ratings
WHERE rating < 1
LIMIT 5;



SELECT COUNT(userid)
FROM ratings
WHERE userid < 0;

SELECT COUNT(movieid)
FROM ratings
WHERE movieid < 0;

SELECT COUNT(time)
FROM ratings
WHERE time < 0;

SELECT *
FROM tags
LIMIT 5;



SELECT COUNT(userid)
FROM tags
WHERE userid <= 0;

SELECT COUNT(movieid)
FROM tags
WHERE movieid <= 0;

SELECT COUNT(tag)
FROM tags



WHERE tag IS NULL;

SELECT COUNT(time)
FROM tags
WHERE time <= 0;

F) Now we will find the distribution of the values for the attribute ‘year of table
‘movies’.

SELECT year, COUNT(*)
FROM movies
GROUP BY year
ORDER BY year;





G) Now let’s find the distribution of the movies across different decades using the
query below.

SELECT decade, COUNT(*)
FROM
(
SELECT case when year between 1910 and 1919 then
'1910'
when year between 1920 and 1929 then '1920'
when year between 1930 and 1939 then '1930'
when year between 1940 and 1949 then '1940'
when year between 1950 and 1959 then '1950'
when year between 1960 and 1969 then '1960'
when year between 1970 and 1979 then '1970'
when year between 1980 and 1989 then '1980'
when year between 1990 and 1999 then '1990'
when year between 2000 and 2009 then '2000'
end AS decade
FROM movies
t
GROUP BY decade
ORDER BY decade ASC;



H) Now we’ll find the distribution of the genres across the movies.

SELECT gen_title, COUNT(*)
FROM has_genre
GROUP BY gen_title;

I) We will also find the distribution of the ratings values.

SELECT rating, COUNT(*)
FROM ratings



GROUP BY rating;

J)
i) Now let’s find how many movies have no tags, but have ratings.

SELECT CAST (count(movieid) AS INTEGER) FROM movies
WHERE movieid
NOT IN (SELECT DISTINCT movieid FROM tags)
AND movieid IN (SELECT DISTINCT movieid FROM
ratings);

ii) Let’s also find how many movies have no ratings, but have tags.

SELECT CAST(count(movieid) AS INTEGER) FROM movies
WHERE movieid
IN (SELECT DISTINCT movieid FROM tags WHERE movieid
NOT IN (SELECT DISTINCT movieid FROM ratings));



iii) We can also find how many movies have neither tags nor ratings.

SELECT CAST(count(movieid) AS INTEGER) FROM movies
WHERE movieid
NOT IN (SELECT DISTINCT movieid FROM ratings) AND
movieid NOT IN (SELECT DISTINCT movieid FROM tags);

iv) And lastly, we shall find how many movies have both tags and ratings.

SELECT CAST(count(movieid) AS INTEGER) FROM movies
WHERE movieid IN ((SELECT DISTINCT movieid FROM
ratings) INTERSECT (SELECT DISTINCT movieid FROM
tags));

We expect that the results from i, ii, iii, and iv will add up to the result of
COUNT(movieid) from the ‘movies’ table. 3080 + 4 + 0 + 7597 = 10,681 which is correct.

CHAPTER 4: QUERY THE DATABASE AND OPTIMIZE THE QUERIES

Now that we are done with testing out the database, we can move forward with
performing analytical queries and optimization.

a) General Queries

1) Find the most reviewed movie, (that is, the movie with the highest number of
reviews). Show the movie id, movie title, and the number of reviews.

In order to perform this request, we will need to JOIN two tables and use multiple
aggregate functions. Before executing the SQL query, I created an index on the attribute
‘movieid’ from the ‘ratings’ table because of the fact that there is an extensive amount of
rows in the ‘ratings’ table. It also cut the running time by nearly 15,000 milliseconds.

CREATE INDEX idx_movieid ON ratings(movieid);
SELECT m.movieid, title, count_ratings
FROM movies AS m
JOIN (
SELECT COUNT(*) AS count_ratings, movieid
FROM ratings



GROUP BY movieid
ORDER BY count_ratings
DESC LIMIT 1) AS t
ON m.movieid = t.movieid;

2) Find the highest reviewed movie (the movie with the most 5-star reviews). Show
the movie id, movie title, and the number of reviews.

Similar to the previous query, we will need to JOIN two tables and use aggregate
functions again, but this time, using the WHERE condition. No index is required for this query
as it has no effect on the execution of the query.

SELECT m.movieid, title, count_reviews
FROM movies AS m
JOIN (
SELECT movieid, COUNT(*) AS count_reviews
FROM ratings
WHERE rating = 5
GROUP BY movieid
ORDER BY count_reviews
DESC LIMIT 1) AS t
ON m. movieid = t.movieid;



3) Find the number of movies that are associated with at least 4 different genres.
To perform this query, one single subquery is needed with the COUNT() function.

No index is required as this query was executed rather quickly.

SELECT CAST(COUNT(*) AS INTEGER)
FROM (
SELECT COUNT(gen_title) AS genre_count
FROM has_genre
GROUP BY movieid) AS t
WHERE genre_count >= 4;



4) Find the most popular genre across all movies (genre associated with the highest
number of movies).

To execute this query, we can simply use the COUNT() function with its
accompanying GROUP BY and ORDER BY functions on just the ‘has_genre’ table. No index
is required as this is simple counting.

SELECT gen_title, COUNT(gen_title)
FROM has_genre
GROUP BY gen_title
ORDER BY COUNT
DESC LIMIT 1;

5) Find the genres that are associated with the best reviews (genres of movies that
have more high ratings than low ratings). Display the genre, the number of high ratings
(>=4.0), and the number of low ratings (< 4.0).

In order to perform this query, it’ll require multiple NATURAL JOINs within complex
subqueries and between two subqueries. The use of the COUNT() function will also be
required.

SELECT gen_title, high_ratings, low_ratings
FROM (
(SELECT gen_title, COUNT(*) AS high_ratings FROM
has_genre NATURAL JOIN ratings WHERE rating >= 4
GROUP BY gen_title) AS high
NATURAL JOIN
(SELECT gen_title, COUNT(*) AS low_ratings FROM
has_genre NATURAL JOIN ratings WHERE rating < 4 GROUP
BY gen_title) AS low)
WHERE high_ratings > low_ratigs;



An attempt at making an index on the attribute ‘rating’ from the table ‘ratings’ was
used. But as you will see, the index had no effect on the execution of this particular query due
to the index not even being used. There was not much of a difference in running times as it
remained relatively consistent. We can know this by using the EXPLAIN ANALYZE
function.

Before creating the index:

After creating the index:



6) Find the genres that are associated with the most recent movies (genres that have
more recent movies than old movies). Display the genre, the number of recent movies
(>=2000), and the number of old movies (< 2000).

Similar to the previous query, this one will also require multiple NATURAL JOINs
within complex subqueries and between two subqueries. The use of the COUNT() function
will also be required.

SELECT gen_title, recent, old
FROM (
(SELECT gen_title, COUNT(*) AS recent FROM has_genre
NATURAL JOIN movies WHERE year >= 2000 GROUP BY
gen_title) AS recent
NATURAL JOIN
(SELECT gen_title, COUNT(*) AS old FROM has_genre
NATURAL JOIN movies WHERE year < 2000 GROUP BY
gen_title) AS old)
WHERE recent > old;



Another attempt at making an index was made on the attribute ‘year’ from the table
‘movies’. But as you will see, the index had no effect on the execution of this particular query
due to the index not even being used. There was not much of a difference in running times as
it remained relatively consistent. We can know this by using the EXPLAIN ANALYZE
function.

Before creating the index:

After creating the index:



b) Debiasing the Ratings of Users
Now we will move on to more complicated queries. We will attempt to find the top 10

movies (with attributes ‘movieid’ and ‘title’) that have received the most biased ratings.
What does having biased ratings mean? Suppose a user is always positively biased and

rates all movies with 5 stars, or always negatively biased and rates movies with 1 or 2 stars.
We want to find these users and de-bias their ratings, that is, find the average rating for a
movie after neutralizing the rating of these users. There are several approaches to neutralize
a biased rating. For example, we can remove these ratings from the database. Or, we can
replace the biased rating with 3.5, or with the average rating of the movie at that moment.
We can also reduce the weight of the rating of biased users when we want to compute the
average rating of a movie.

In this approach, we will try to identify the biased users by computing the difference
between their rating and the average rating of the movie. We will save the difference in an
additional column in the ‘ratings’ table. We will then update their rating with the average
rating of the movie and we will also update the timestamp. After we do this operation for all
users, we will then perform the same task one more time, now using the new average rating
for each movie. We may have to repeat this process more than 2 times if necessary.

At the end, we will try to extract the average rating of a movie and identify the top 10
movies that had received the most biased ratings.

Step 1) Find the difference between a user's rating and the average rating of the
movie he has rated.



We will do this by creating a new table, ‘ratings_with_diff’, that includes all columns
from table ‘ratings’, plus 2 new columns: the average rating and the difference (rating -
average rating).

First, we create the table ‘ratings_with_diff’ using the same attributes of the table
‘ratings’. This might take a while as the command prompt is essentially making a copy of the
table ‘ratings’ which has 10000054 rows. We can check if the table has been made using the
\d function in the command prompt.

CREATE TABLE ratings_with_diff AS TABLE ratings;

Once the new table has been created, alter the table to add columns ‘avg_rating’ and
‘difference’. The schema is now ratings_with_diff(userid, movieid, rating, time, avg_rating,
difference). We can check this with the command \d+ ratings_with_diff.

ALTER TABLE ratings_with_diff ADD COLUMN avg_rating
DOUBLE PRECISION;
ALTER TABLE ratings_with_diff ADD COLUMN difference
DOUBLE PRECISION;

Now we’ll create the table ‘avg_ratings’ with attributes ‘movieid’ and ‘avg_rating’
which will contain the average rating for each movie, hence saving time populating the table
‘ratings_with_diff’ later on. We’ll populate this table using data from the ‘ratings’ table and



the use of the AVG() function. Like before, we can also check if the table was created and
if the table contains the desired columns made. 10677 rows should be affected from these
queries.

CREATE TABLE avg_ratings(movieid NUMERIC, avg_rating
DOUBLE PRECISION);
INSERT INTO avg_ratings SELECT movieid, AVG(rating)
AS avg_rating FROM ratings GROUP BY movieid;

We then UPDATE the ‘avg_rating’ in the ‘ratings_with_diff’ table with the averages
from the ‘avg_ratings’ table. This will also take a while as 10000054 rows will be updated.

UPDATE ratings_with_diff SET avg_rating =
avg_ratings.avg_rating
FROM avg_ratings
WHERE ratings_with_diff.movieid =
avg_ratings.movieid;
We then UPDATE the ‘difference’ column. Once again,
this will take a while as 10000054 rows are being
updated.
UPDATE ratings_with_diff SET difference = rating -
avg_rating;

Step 2) Update the rating of users whose rating difference (absolute value) is > 3.
This will involve a subquery within the SET function. 40498 rows should be updated

from this query.

UPDATE ratings_with_diff r
SET rating = (SELECT avg_rating FROM avg_ratings
WHERE r.movieid = avg_ratings.movieid)



WHERE @difference > 3;

Step 3) Find the new difference between a user's rating and the average rating of
the movie they have rated.

To perform this step, we need to first take the new average of each movie. This
information will be stored in a new table called ‘avg_ratings2’. We can, again, check if this was
performed successfully with the \d function in the command prompt. 10677 rows should be
added.

CREATE TABLE avg_ratings2(movieid NUMERIC, avg_rating
DOUBLE PRECISION);
INSERT INTO avg_ratings2 SELECT movieid, AVG(rating)
AS avg_rating FROM ratings_with_diff GROUP BY
movieid;

Next, UPDATE the table ‘ratings_with_diff’ with the new averages from the
‘avg_ratings2’ table. This will take a while as 10000054 rows will be affected.

UPDATE ratings_with_diff
SET avg_rating = avg_ratings2.avg_rating
FROM avg_ratings2
WHERE ratings_with_diff.movieid =
avg_ratings2.movieid;
Then, we find the new difference. This will also take
a while because of the 10000054 rows that are in this
table.
UPDATE ratings_with_diff SET difference = rating -
avg_rating;



Step 4) Again, update the rating of users whose rating difference (absolute value) is
> 3.

This is basically the same query as in step 2 except with the table ‘avg_ratings2’. 751
rows should be updated.

UPDATE ratings_with_diff r
SET rating = (SELECT avg_rating FROM avg_ratings2
WHERE r.movieid = avg_ratings2.movieid)
WHERE @difference > 3;

We can check how the table ‘ratings_with_diff’ should look by viewing the first 5 rows
of the table. Please note that the data itself might not match due to the lack of cohesive
ordering in this table. Just make sure the attributes are all there and that the math for the
‘difference’ column is correct.

SELECT * FROM ratings_with_diff LIMIT 5;

Step 5) Find the average rating for each movie before the de-biasing (from the
‘ratings’ table) and the average rating for each movie after the de-biasing (from the
‘ratings_with_diff’ table). List the top 10 movies that have the biggest difference between
these two average ratings. (These are the movies that had the most biased ratings.)

This will require a very complex query containing 3 subqueries that all come together
with the NATURAL JOIN function. Make sure the selected tables are in the right order and
watch out for spelling errors. Please note that the movies may not be in order. As long as the
movies match, the de-biased query is complete.

SELECT movieid, title, original, debiased,
@original-debiased AS bias FROM
(SELECT movieid, title FROM movies) t1
NATURAL JOIN
(SELECT movieid, avg_rating AS original FROM
avg_ratings) t2
NATURAL JOIN
(SELECT movieid, AVG(rating) AS debiased FROM
ratings_with_diff GROUP BY movieid) t3
ORDER BY bias DESC LIMIT 10;

The top 10 movies with the most biased ratings:



Step 6) EXTRA: Who is the most biased user?
This is an extra step that is not required, but can be useful practice in coding in SQL

and completing complicated queries. To complete this query, we can define the most biased
user as having the most rows changed during de-biasing steps. Thus, a much simpler query
with subqueries is needed and we would need to COUNT() the number of rows this user
has between the ‘ratings’ and ‘ratings_with_diff’ tables.

SELECT userid, count(*) FROM
(SELECT userid, movieid, rating AS original FROM
ratings_with_diff) t1
NATURAL JOIN
(SELECT userid, movieid, rating AS debiased FROM
ratings) t2
WHERE original <> debiased
GROUP BY userid
ORDER BY count(*) DESC
LIMIT 1;

The most biased user:

CHAPTER 5: DISCUSSION

To conclude this project, I will discuss some final observations and assumptions.



In the beginning of the project, I had made the narrow-minded assumption that the
E/R design of the database only involved three tables from the three files that were initially
given. After more thorough analysis and thought processes, I edited my E/R diagram to match
the designated design of the database. From now on, I should refrain from assuming that the
number of tables in a database equals the number of files of data given.

I didn’t seem to find any constraints while designing the database, except for having to
SET the encoding when loading data into tables that had the movie title. The reason this
was a constraint for me was because of various movie titles that would have special
characters in it that would make processing the data difficult and both the Python prompt
and command prompt would run into encoding errors.

I ran into a significant amount of redundancy in testing my database, specifically when
using the COUNT() function to complete various queries. There was also an extensive
amount of redundancy in checking for NULL values throughout all the tables. Besides those
two key redundancy parts, there weren't many errors that I ran into.

The percentage of unknown values in the attributes is close to zero, if we include the
movie that had no genres listed. Besides that, there weren’t any NULL nor missing values in
my database.

There wasn’t much benefit from using indexes in my case. They weren’t even used
after creating them, which suggests the database must need to be a lot more bigger in order
for Postgres to be resorted to using an index.

The biggest challenge I ran into during this project was simply loading the data into
the tables. I had to constantly DROP and reCREATE tables due to the primary key
constraints on certain tables. Then I also ran into problems with coding in Python to split
strings and appending lines properly. I spent most of the time during this portion of loading
the data in coding the Python scripts to process the necessary data needed for the tables.

I also ran into challenges in testing the database as some of these queries were hard
to complete. I had to resort to Google to look up various ways to code subqueries and learn
new SQL functions. It was definitely helpful to learn new tricks in SQL as it made my SQL code
look more concise and organized.

cccc


